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Effects of cross-correlated noises on the intensity
fluctuation of the single-mode laser system
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A single-mode laser model with cross-correlated additive and multiplicative noise terms is considered, and
the effects of correlation between noises on the relaxation time and the intensity correlation function are
studied. Using the projection operator method and taking into account the effects of the memory kernels
of the intensity correlation function, the analytic expressions for the relaxation time and the correlation
function are derived. Based on numerical computations, it is found that the self-correlation time and the
cross-correlation time have the same effects on the single-mode laser system.
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It is known that the single-mode dye laser model
with additive white noise and multiplicative white noise
is often used as a prototype to investigate the laser
fluctuations[1−5]. Using this method, the previous stud-
ies have revealed that the consideration of additive and
multiplicative noises simultaneously is of importance to
deeply understand statistical properties of the single-
mode laser system[6]. In most of these existing theo-
retical studies, the multiplicative noise (pump noise) and
the additive noise (quantum noise) are both modeled as
Gaussian white noise and are treated as uncorrelated.
Recently, the effects of correlation between additive
and multiplicative noises on the statistical fluctuation
of the single-mode laser model have attracted close
attention[7−10]. Xie et al.[11] considered the correlation
between the two noises and studied the effects of cor-
relation intensity λ on the relaxation time Tc and the
intensity correlation function C. But that study only
considered that the self-correlation time τ0 and the cross-
correlation time τ of the two noises are both zero. In this
paper, we consider that τ0 and τ are not zero and inves-
tigate the effects of τ0 and τ on the single-mode laser
system.

The complex field-amplitude E of the cubic model of
a single-mode laser system can be described by Langevin
equation (LE)[3],

dE

dt
= a0E − A |E|2 E + p̃(t)E + q̃(t), (1)

where a0 and A are real and respectively stand for the net
gain and the self-saturation coefficients, p̃(t) is the pump
noise and q̃(t) is the quantum noise. Performing the po-
lar coordinate transform E = xeiϕ, Eq. (1) can be trans-
formed into two coupling LEs for the field-amplitude x
and phase ϕ. By decoupling them, the LE of x can be
obtained as[12]

dx

dt
= a0x − Ax3 +

D

2x
+ xp(t) + q(t). (2)

We only consider the intensity fluctuation of the laser
system. Assuming I is the laser intensity (I = x2), Eq.

(2) is readily written for I as

dI

dt
= (2a0 − AI)I + D + 2I1/2q(t) + 2Ip(t). (3)

The multiplicative noise p(t) and the additive noise q(t)
are considered to be Gaussian-type noise,

〈q(t)q(t′)〉 = 2Dδ(t − t′), (4)

〈p(t)p(t′)〉 =
Q

τ0
exp(− |t − t′| /τ0) → 2Qδ(t − t′), (5)

and

〈p(t)q(t′)〉 = 〈q(t)p(t′)〉 =
λ
√

QD

τ
exp [− |t − t′| /τ ]

→ 2λ
√

QDδ(t − t′), (6)

where Q and D are the multiplicative and additive noise
intensities respectively, τ0 and τ are the self-correlation
time and cross-correlation time respectively, λ is the in-
tensity of correlation between p(t) and q(t). Applying the
Novikov theorem[13] and the Fox’s approach[14], the ap-
proximate Fokker-Planck equation corresponding to Eq.
(3) reads

∂P (I, t)
∂t

= LFPP (I, t), (7)

with

LFP = − ∂

∂I
F (I) +

∂2

∂I2
B(I). (8)

The drift coefficient F (I) and the diffusion coefficient
B(I) are given by

F (I) = 2(a0 +
Q

1 + 2a0τ0
− AI)I +

3λ
√

DQ

1 + 2a0τ
I1/2 + 2D,

(9)

B(I) = 2
Q

1 + 2a0τ0
I2 + 4

λ
√

DQ

1 + 2a0τ
I3/2 + 2DI. (10)
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It should be pointed out that the above approximate
Fokker-Planck equation is valid only for the case of
1 + 2a0τ0 > 0 and 1 + 2a0τ > 0. The steady-state prob-
ability density function Pst(I) can be obtained directly
from Eq. (7) as

Pst(I) = N
(
I +

2λ(1 + 2a0τ0)
(1 + 2a0τ)

√
DI

Q

+
D(1 + 2a0τ0)

Q

)α1(λ) exp(β(I)), (11)

where

α1(λ) =
a0(1 + 2a0τ0)

2Q
+

DA(1 + 2a0τ0)2

2Q2

−2ADλ2(1 + 2a0τ0)
Q2(1 + 2a0τ)2

− 1
2
, (12)

β(I) =
2Aλ(1 + 2a0τ0)2

√
DI

(1 + 2a0τ)Q3/2
− A(1 + 2a0τ0)

2Q
I + α2(λ),

(13)

α2(λ) =
α3(λ)
α4(λ)

× arctan
2
√

I + 2λ(1 + 2a0τ0)
√

D/
(
(1 + 2a0τ0)

√
Q

)
α4(λ)

,(14)

α3(λ) =
8AD3/2λ3(1 + 2a0τ0)4

(1 + 2a0τ)3Q5/2
+

2λ
√

DQ(1 + 2a0τ0)
(1 + 2a0τ)Q

−2a0λ
√

D(1 + 2a0τ0)2

(1 + 2a0τ)Q3/2
− α5(λ), (15)

α4(λ) = 2
[
D(1 + 2a0τ0)

Q
− λ2D(1 + 2a0τ0)2

Q(1 + 2a0τ)2

]1/2

, (16)

α5(λ) =
2λAD3/2(1 + 2a0τ0)3

(1 + 2a0τ)Q5/2

+2

[
2AλD3/2(1 + 2a0τ0)3

(1 + 2a0τ)Q5/2
+

2λ
√

D(1 + 2a0τ0)
(1 + 2a0τ)Q3/2

]
, (17)

and N in Eq. (11) is the normalization constant.
The stationary normalized intensity correlation func-

tion of the state variable is defined by[15]

C(Δt) = lim
t→∞

〈δI(t + Δt)δI(t)〉
〈(δI)2〉 =

〈δI(t + Δt)δI(t)〉st
〈(δI)2〉st

.

(18)

Based on this equation, the associated relaxation time
is

Tc =
∫ ∞

0

C(Δt)dΔt. (19)

In terms of the adjoint operator L+
FP of the opera-

tor given by Eq. (8), δI(t + Δt) can be expressed as
δI(t + Δt) = exp(L+

FPΔt)δI(t). Thus one can rewrite
Eq. (18) and get the associated Laplace transform

C̃(ω) =
∫ ∞

0

exp(−ωΔt)C(Δt)dΔt

=
1

〈(δI)2〉st

〈
δI

1
ω − L+

FP

δI

〉
st

. (20)

Using the projection operator method used by Fujisaka
and Grossmann[16] to deal with the Laplace resolvent
ω − L+

FP in Eq. (20), we have the following continued
fraction expression[15,16],

C̃(ω) =
1

ω + μ0 + η1
ω+μ1+

η2
ω+μ2+···

, (21)

in which

μi = −
〈
δIiL

+
FPδIi

〉
st

〈(δIi)2〉st
, (22)

ηi = −
〈
(δIi)2

〉
st

〈(δIi−1)2〉st
, (23)

δIi+1 = Ji+1L
+
FPδIi, (24)

with starting δI0 = δI and J0 = 1. The operator Ji is
determined by

Si−1 = Ji−1 − Ji =
δIi−1

〈(δIi−1)2〉st
〈δIi−1| , (25)

where the operator 〈δIi| acting on ϕ(I) means the scalar
product

〈δIi|ϕ(I) = 〈(δIiϕ(I))〉st =
∫

Pst(I)δIiϕ(I)dI, (26)

where the projection operator Si projects ϕ(I) onto the
subspace associated with the variable δIi, the projector
Ji projects onto the space orthogonal to the space con-
taining δIi. The basic idea behind the method used to
lead a continuous fraction expansion is to identify δIi

as a slow variable and in Ji space it slaves the remaining
fast variables[17]. Fujisaka et al.[16] have pointed out that
earlier experience with the Duffing oscillator or with the
laser fluctuation has shown that the effects of higher or-
ders of memory are not significant. Setting η2 = 0, the
first-order approximation of Tc is

Tc =
[
μ0 +

η1

μ1

]−1

, (27)

and the first-order approximation of C̃(ω) is

C̃(ω) =
ω + μ1

(ω + μ0)(ω + μ1) + η1
, (28)

where

μ0 =
〈B(I)〉st
〈(δI)2〉st

, (29)

η1 =
〈G(I)F ′(I)〉st

〈(δI)2〉st
+ μ2

0, (30)
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μ1 = −

〈
G(I) [F ′(I)]2

〉
st

η1 〈(δI)2〉st
+

μ3
0

η1
− 2μ0. (31)

Performing the Laplace converse transformation of Eq.
(28), we get

C(Δt) = (1 + Δ) exp(−α−Δt) + Δ exp(−α+Δt), (32)

where

Δ =
μ1 − α−
α+ − α−

, (33)

α± =
1
2

{
μ0 + μ1 ±

[
(μ1 − μ0)2 − 4η1

]1/2
}

. (34)

Let τ0 = 0 and τ = 0, the above results fall back to
Eqs. (18)—(20) presented in Ref. [11].

Using Eqs. (29)—(31), we can calculate μ0, η1, and μ1.
The effects of τ0 and τ on Tc (Eq. (27)) and the in-

tensity correlation function (Eq. (32)) of the single-mode
laser system can be analyzed by the numerical calcula-
tion. We only consider the positive correlation (λ > 0)
in this paper. The results are plotted in Figs. 1—3 re-
spectively.

Figure 1 shows that the curves of Tc as functions of the
net gain a0 with different values of τ0 (Fig. 1(a)) and τ
(Fig. 1(b)). We can find that Tc exhibits a single-peak
with the increase of a0. This means that with the in-
crease of a0, the decay rate of the intensity fluctuation
in the stationary state turns over, from slowing down
to speeding up. This conclusion is the same as the re-
sult in Ref. [11]. The difference only lies in the position
of peak. Owning to the effects of τ0 and τ , the position of

Fig. 1. Relaxation time Tc as a function of the net gain a0.
(a) Q = 1.78, D = 2, λ = 0.8, and τ = 0.3, τ0 takes 0.3, 0.4,
0.5, respectively; (b) Q = 1.78, D = 2, λ = 0.8, and τ0 = 0.3,
τ takes 0.1, 0.3, 0.5, respectively.

peak is not near the threshold[11] (a0 = 0) but far above
the threshold. It is clear that τ0 and τ have the same
effects on Tc, I.e., the larger τ0 or τ is, the larger Tc is.

Figure 2 shows that the curves of C as functions of a0

Fig. 2. Intensity correlation function C as a function of the
net gain a0. (a) Q = 1.78, A = 1, D = 2, λ = 0.8, and
τ = 0.3, τ0 takes 0.3, 0.4, 0.5, respectively; (b) Q = 1.78,
A = 1, D = 2, λ = 0.8, and τ0 = 0.3, τ takes 0.1, 0.3, 0.5,
respectively.

Fig. 3. Intensity correlation function C as a function of time
interval Δt. (a) Q = 1.78, A = 1, D = 2, λ = 0.5, and
τ = 0.5, τ0 takes 0.1, 0.5, 1.5, respectively; (b) Q = 1.78,
A = 1, D = 2, λ = 0.5, and τ0 = 0.5, τ takes 0.1, 0.3, 0.9,
respectively.
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with different values of τ0 (Fig. 2(a)) and τ (Fig. 2(b)).
It is known that C is a measure of correlation between
intensities at time t and t + Δt. As shown, the curves
exhibit a peak with the increase of a0. Far above the
threshold, the correlation becomes weaker and weaker
with the increase of a0. In Fig. 2, it is obvious that τ0

(τ) plays a positive role in C, i.e., the larger τ0 (τ) is, the
larger C is. From Figs. 1 and 2, we can find that τ0 and
τ have the same effects on the single-mode laser system,
with the increase of correlation time, the decay rate of C
becomes slower and slower.

As might be excepted, this result that C decays with
time interval Δt (see Fig. 3), is the same as that in Ref.
[11]. The effects of τ0 and τ on C are exhibited in Fig. 3
too. That is, the larger τ0 or τ is, the larger C is.

In conclusion, τ0 and τ have the same effects on Tc and
C. Tc and C increase with the increase of τ0 or τ in the
case of positive correlation (λ > 0). With the increase of
a0, Tc and C have a peak, the result of which is the same
as that in Ref. [11]. Owning to the effects of τ0 and τ ,
the position of peak is far above the threshold.

This work was supported by the National Natu-
ral Science Foundation of Yunnan Province under
Grant No. 2005A002M. B. Wang’s e-mail address is
hnitwb@163.com.
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